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Computer simulation of curved crystal 
habits: polymer crystallization under an 
anisotropic growth condition 
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Computer simulation was carried out to study the morphological change in the lateral habit of polyethylene 
single crystals grown from the melt. Monte Carlo simulation was utilized for modelling the processes of 
surface nucleation and step propagation on the growth faces of a two-dimensional crystal with hexagonal 
packing. Anisotropy of growth was introduced in the simulation by choosing different rates for these 
processes on the { 110} and { 100} faces. Depending on the ratio of the step propagation velocity to the rate of 
increasing width of the growth face, the computer simulation produced curved crystals of truncated lozenge 
or lenticular shape, both of which have been observed experimentally. The change in morphology has been 
analysed quantitatively. Copyright © 1996 Elsevier Science Ltd. 
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I N T R O D U C T I O N  

Single crystals of  polyethylene with curved lateral habit 
have been reported by several researchers 1-3 in their 
work on crystallization from dilute solutions. The 
crystals are basically truncated lozenges with curved 
edges on the {100} growth faces (type B in Figure lb). 
Single crystals of  lenticular shape (type A in Figure la) 
have also been reported when polyethylene is crystallized 
from the melt or from solutions at higher temperatures 
(e.g. 106°C) 1'4'5. Furthermore,  in the case of  crystal- 
lization from the melt, polyethylene single crystals show 
a morphological change from type A to type B which 
accompanies the transition in growth regime from I to 
II 6~8. To understand the formation mechanism of these 
curved crystals is one of the current problems in this 
field. In the earliest approach proposed by Sadler 9, 
thermal roughening of  the growth face was responsible 
for the curved crystals, but the idea was incompatible 
with the standard models of polymer crystallization ~° in 
which the limiting process is surface nucleation, a process 
unnecessary for the growth of thermally roughened 
faces. Toda 11 proposed an alternative approach, intro- 
ducing some interruption effect on the step propagation 
on the basis of  nucleation-controlled growth. Such an 
interruption effect is also able to cause curved growth 
edges, as typically seen in the impurity effect on the 
crystal habits of  simple molecules 12. 

* To whom correspondence should be addressed 
t Current  address: Faculty of  Integrated Arts  and Sciences, Hiroshima 
University, Higasi-Hiroshima 739, Japan 

Following the second approach, Mansfield 13 proposed 
a theoretical model which allowed us to study the 
morphological change in more detail. The approach is 
based on a model proposed by Seto 14 and Frank 15 and 
takes the effect of substrate growth into account by 
introducing a moving boundary condition. Mansfield's 
model successfully produced the curved growth front 
of type B crystals of polyethylene (Figure lb) for the 
spreading rate of substrate h being comparable with 
the propagation velocity of  steps v, of h ~< v; the profile of 
the growth front is represented by an arc of an ellipse in 
the asymptotic form. Toda 5 extended the model for the 
case of substrate spreading faster than the propagation 
of steps, h > v, and showed that the lenticular profile 
(type A in Figure la) is also predicted from the model. 
Point and Vilters 16 obtained the numerical solutions of a 
differential equation derived from the model of Seto and 
Frank with a moving boundary condition; the resultant 
crystals were also type A and type B. In these models, an 
unusually slow propagation of  steps is essential to 
produce the curved growth front. The origin of such a 
slow propagation of steps has not been identified; 
possible candidates are impurities II, self-poisoning 17, 
lattice strain 18 and domain boundaries 8, 

All the above approaches are based on the model of 
Seto and Frank, describing nucleation and growth 
processes on a continuous one-dimensional substrate, 
and hence the approaches should be considered as an 
idealization of  the real crystals formed on a discrete 
lattice. Strictly speaking, the detailed analyses of the 
models are applicable only to growth with a sufficiently 
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low step density. In dealing with the curved lateral habits 
of  actual crystals, however, we always encounter the 
situation of extremely high step density, which is solely 
responsible for the curved profile of  the growth front. In 
order to do a detailed inspection of the curved profile and 
its growth kinetics, we must perform a computer 
simulation of  a discrete lattice. 

In this work, we perform a Monte Carlo simulation of 
a two-dimensional hexagonal lattice, applying an aniso- 
tropic growth condition to model polyethylene crystal- 
lization into an orthorhombic cell. Here 'hexagonal 
lattice' only means that each site has six nearest 
neighbours and we assign the indices [100] and [010] to 
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Figure 1 Schematic illustration of  (a) a lenticular shape (type A) and 
(b) a truncated lozenge with curved edges (type B). Both types are 
composed of  { 100} and { 110} growth sectors. The width of the { 110} 
sectors in the type A crystal is too narrow to be recognized 

two orthogonally crossed directions according to the 
lattice of polyethylene crystals. A large difference in the 
growth rates of the {110} and {100} faces is essential to 
produce the curved crystals of type A and type B. 

M O D E L  

We treat the growth of two-dimensional crystals on a 
hexagonal lattice; the crystallization unit is called a 
'stem'. The scale factors are the stem width a and the 
stem height b (Figure 2). In the simulation, a crystal 
grows through two processes: one is nucleation and 
the other is step propagation. The probabilities of 
these processes are denoted as ia and v/a, respectively, 
because of the dimensions of  the rate i (cm- '  s - l )  and 
the velocity v (cms-l) .  These two processes are 
performed successively in the time sequences, as follows. 
Firstly, the number of nucleation events ni is determined 
from a Poisson distribution. Let the number of flat sites 
be N, then the average number of nucleation events (ni) 
is Nia, and the probability p(ni) becomes 

• (Nia)" 
p(ni) = . . ,  e x p ( - ( n i ) ) - -  ni~ exp(- Nia) 

According to the probability, the number of nucleation 
events is determined by a random number r (0 < r < 1). 
If  the random number r satisfies the condition 

ni ni+l 

E p ( i  ) <_r < E p ( i )  
i--O i--O 

then the number of nucleation events is determined as ni. 
The positions of  these nuclei are selected using a random 
number generated separately. This procedure is of 
advantage for reducing the execution time of the 
simulation, but only when ia is small enough 19. Secondly, 
for the step propagation, each niche site is examined to 
determine whether the step has advanced forwards or 
not. Each computer simulation is continued until the 
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system reaches a steady state (until the growth rates Ga 
and Gb become constant); the crystal size is at least 5000 
lattice sites. 

In order to introduce an anisotropic growth condition, 
we give ia and v/a two values according to the { 110} and 
{100} growth faces. To distinguish the rates on these 
growth faces, we denote the rates as il00al00, ill0all0, 
Vloo/aloo and vl10/al10. To complete the step propaga- 
tion at the edges of  multilayer steps and the {110} and 
{100} growth sectors, we must distinguish the two 
additional situations of  the attachment of  a new stem 
to the bottom corner and to the top corner of  a 
multilayer step or the edges of a growth sector, and 
consequently we need to introduce the probabilities v b 
and vt of  the respective processes (Figure 2). Here, we 
need to settle the complex conditions for the deposition 
rate at the corners; however, this is beyond our knowl- 
edge available from the experimental results• At present, 
we simply choose to put v b = VloO/alO 0 in the simulation 
because our main concern is the growth on the {100} 
faces. The choice of  vt is more complicated because this 
parameter controls the stability of multilayer steps; a 
slow filling rate of  vt causes the decomposition of 
multilayer steps. In the simulation, we examine two 
cases: "U t : VlOO/alO 0 and V t 7-- VllO/all O. 

In our model, the six parameters detailed above 
determine the growth kinetics and the morphology of  a 
two-dimensional crystal formed on an orthorhombic 
lattice. The rate of  increasing width of  the growth 
substrate h is automatically determined by these para- 
meters because the simulation is of  a two-dimensional 
crystal. From the number of  controlling parameters, it 
seems that there might be an extremely wide choice of  
parameters. However, since we are concerned with the 
conditions generating type A and type B crystals, we 
require that (1) the aspect ratio B/A  be less than around 
3, (2) hi00 be approximately equal to vl00 and (3) the step 
density on the { 110} face be low enough so that the facets 
of  the { 110} growth faces can be observed. According to 

• 2 the first condition, we set tlooaloo/Vloo = 1/30 for the 
aspect ratio of  2.6 obtained from lenticular crystals 
experimentally 5'6'8. From the second condition, we set 
Vl00 ~ blloilloLllo (~hl00) , expecting single-nucleation 
growth of the {110} growth face in lenticular crystals• 

• 2 Finally, from the third condition, we set q 10a110/v110 << 1. 
Taking these conditions into account, we set 
ilooalo 0 = 1 0  - 3  and vloo/alo 0 = 0.03, and the probability 
of  the fastest process, namely v110/a110, is always set at 1. 
To control the value of hloo/VlOO in our simulation, we 
choose i110a110 as the controlling parameter because of the 
advantage in comparing results and the ease with which 
we can change the value; if we choose vloo/aloo, we will 
have to change other parameters simultaneously. The 
value of  i110allo is chosen from the range 10-4-6 x 10 -3. 
Additionally, to make a clear comparison between 
simulation and theoretical results, we also adopt the 
condition " 2 lllOalOO/VlO 0 = 1/300 for the case of low step 
density. The remaining two parameters Vb and vt are 
determined as stated above. The parameters used in the 
simulation are listed in Table 1, as are the results for 
hloo/V~o 0 (where v]00 is a corrected step propagation rate 
defined later), the aspect ratio B/A  and crystal type. 

In our model, we neglect the probability of the 
detachment of stems. But this does not mean that we 
simply ignore the fluctuation of  step propagation; 

fluctuation can be introduced by making the probability 
Vl00al00 less than 1. In general, detachment processes will 
not be important unless the difference between the rates 
of  attachment and detachment is small enough, and this 
is the case under the usual conditions of  polymer 
crystallization. 

T H E O R E T I C A L  

In this section, we refer to the results of  the theoretical 
calculations of Mansfield 13 (h < v) and Toda 5 (h > v). 
Since we are concerned with the curved growth front of  
the { 100} growth face, all the subscripts which specify the 
{ 100} growth face are omitted in this section. 

The basis of these calculations is a couple of  
differential equations suggested by Seto 14 and Frank 15. 
The equations describe the change in the densities of left- 
moving and right-moving steps, l(x, t) and r(x, t), at a 
position x and time t on a one-dimensional substrate of  
length L. The growth rate G and the profile of  the growth 
front are given by G = b(l + r)v(= 2bey, where 2c is the 
total step density) and by the integration of b ( l - r ) ,  
respectively 15. Employing the moving boundary condi- 
tion L = 2ht, Mansfield 13 obtained an asymptotic solu- 
tion of the differential equations for h < v 

} r ( x , t )=  ~v \ v t - x / J  ( O < l x l < h t )  (1) 

l(x, t) ~ 2v \v t  + x / J 

These step densities give the profile of the growth front as 

y = at[1 - (x/vt)2] 1/2 (2) 

where x and y are the coordinates of  the [010] and [100] 
directions in Figure 1, respectively. Equation (2) repre- 
sents an ellipse, the shape of  which is independent of  the 
rate h. The substrate spreading rate h determines the 
positions of  the edges of the growth substrate, x = + ht, 
in the ellipse. Since the solution gives a six-sectored single 
crystal composed of two { 100} growth sectors and four 
well-developed {110} sectors, we call this profile a 
' truncated lozenge' with curved edges (type B in 
Figure lb). 

In the case of h > v, the densities of right-moving and 
left-moving steps are given in the )ositive x region by 5 

[ ( i )  ( v t - x~ ] ' / '  ~ t  (3) 

l(x, t) ,~ ~v \v t  + x / ]  

) r(x, t)= \ h - v y J  2 

i h - -  V 1 / 2  ~-t  _< x < ht (4) 

'Ix, t / "  [ ( ~ )  ( ~ ) ]  

For  negative x, the symmetry relation r ( -x ,  t) = l(x, t) 
holds. It should be noted that in the vicinity o f x  = 4-ht, 
equations (4) are not the exact solution because of the 
boundary condition l(+ ht, t) = r(:t: ht, t) = 0. A char- 
acteristic of  the solution is the constant step densities 
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near the edges of  the substrate, i.e. (v2t/h < Ix] < ht, as 
seen in equations (4). This means that the profile 
becomes linear near the edges, while the central region 
(equations (3)) is represented by Mansfield's ellipse of  
equation (2). Since the substrate spreads faster than the 
propagat ion of steps, the substrate does not grow at the 
edges, x = + ht, and consequently the width of  the { 110} 
growth sectors is kept constant from the early stages of  
growth; the lateral habit expected from this solution is a 
'lenticular shape' (type A in Figure la). 

RESULTS A N D  DISCUSSION 

Profile 
Figure 3 shows the lateral habits and the morpho-  

logical change obtained in the present simulation for 
• 2 
llOOalOO/VlO 0 = 1/30 and v t = V l 0 0 / a l 0 0 .  It is clear that 
depending on the value of hloo/V'loo or ill0all0, the 
crystals change habit f rom truncated lozenge (type B) to 
lenticular shape (type A). In the type A crystals in Figures 
3e and 3f, the width of  the { 110} growth sectors was kept 
constant from the early stages of  growth. The width was 
several tens of  sites and the { 110} sectors cannot be seen 
in the figures at the given magnifications. 

The morphological change seen in the simulation 
agrees with the theoretical predictions described 
above 5'6's. In quantitative comparison with the theo- 
retical calculations, however, the results of  simulation do 
not agree well with the calculations• The discrepancies 
between the theoretical calculations and the simulation 
results will be discussed below in detail. Here, it should 
be noted that the morphological change from type B does 
not occur a t  hl00/v~100 = 1, in contrast to the theoretical 
prediction 5'6'8. The value of  hloo/V'loo needs to be some- 
what larger than 1 to give rise to the transition. This is 
because the growth in width of the { 110} sectors is enabled 
by nucleation at the outermost edges of  the { 100} growth 
face, in spite of  the condition hloo/V'loo _> 1. Additionally, 
the choice of  vt also affects the resultant morphology; a 
smaller vt brings a decrease in the growth rate of the width 
and vice versa. Such an effect of  vt can be seen in 
simulations 1-9 in Table 1. By the choice of  
V t = V l l 0 / a l l 0 ,  the width of the {110} sectors is kept 
constant only for simulation 9 with the quite large values 
hloo/V'lOO = 2.80 and B/A = 9.8. We are not able to judge 
whether the choice of  vt = Vl00al00 in the present 
simulation is a realistic one or not. At least it is certain 
that the process of  filling in at the corners is one of the 

Table  i Pa rame te r s  used in the s imula t ion  and  the results for hloo/v'loo, aspect  rat io B / A  and  crystal  type. The  o ther  fixed pa rame te r s  are  
1;100/a100 -- *~b = 0.03 and VllO/all 0 - 1 

Simula t ion  ilooa~oo/Vlo o vt il toal 1o hloo/V'lo o B/  A Type  

1 1/30 ~;llO/allO 10 5 0.01 0.54 B 

2 6 x 10 5 0.23 1.3 B 

3 10 -4 0.33 1.7 B 

4 3 × 10 4 0.68 2.8 B 
5 6 × 10 4 1.02 3.9 B 

6 10 3 1.36 5.1 B 

7 2 × 10 3 1.85 6.9 B 

8 3 x 10 3 2.22 8.1 B 

9 6 x 10 3 2.80 9.8 A 

10 Vloo/aloo 2 × 10 4 0.68 2.6 B 

11 3 × 10 4 0.87 3.1 B 

12 4 x 10 4 1.03 3.5 B 

13 6 × 10 a 1.27 4.3 B 

14 10 3 1.40 4.8 A 

15 1.5 × 10 3 1.45 5.0 A 

16 3 × 10 3 1.53 5.3 A 

17 6 × 10 -3 1.65 5.6 A 

18 1/300 l'110/a110 5 × 10 6 0.05 1.0 B 

19 10 5 0.10 1.5 B 

20 10 4 0.4l 5.1 B 

21 3 × 10 4 0.72 8.3 B 

22 4 × 10 4 0.86 9.6 B 

23 5 × 10 a 0.96 11 B 

24 5.5 × 10 4 1.02 12 B 

25 6 x 10 4 1.06 12 B 

26 10 3 1.29 15 B 

27 3 × 10 3 1.74 20 A 

28 1/300 (/'step = 0) Ull0/all 0 6 × 10 4 1.01 11 B 

29 7 × 10 4 1.03 12 A 

30 10 3 1.12 13 A 

31 2 × 10 3 1.30 15 A 
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most important factors determining the lateral habits in 
the actual crystallization process. 

Growth rate of the {100} face 
Before starting the discussion, we need to introduce 

two different step densities. One is c (s) and the other c(m); 
a multilayer step is counted once as a single step in the 
former density, and in the latter it is counted according 
to the number of layers in the step. The former density 
represents that of  number-averaged steps and the latter 
that of  weight-averaged steps. In the evaluation of  
growth rate and slope, we need to use c (m). 

The growth rate G a is determined by the growth 
kinetics in the central region of  the { 100} growth face. On 
such a well-developed growth face as that of  the {100} 
sector, it is reasonable to assume multinucleation 

a ( ) 
b 

C 

d 

l 

l 

e ----> 

f 

Figure 3 Two-dimensional crystals created by the simulation. The 
results are for simulations 10 (a), 11 (b), 12 (c), 13 (d), 15 (e) and 17 (f) 
from Table 1. The bar corresponds to a width of 1000 sites 

growth. The growth rate in this mode is usually 
represented by 

G a = b l o o ( 2 i l O O v l o o )  1/2 (5) 

For  growth on a discrete lattice, however, we must 
consider the following two additional effects, especially 
under the condition of  high step density encountered in 
the simulation. Firstly, nucleation at a niche site on a 
discrete lattice has no physical meaning, and hence these 
niche sites must be ruled out as sites for nucleation. The 
average nucleation rate i'lOO(X), taking account of this 
effect is represented by 

i~oo(X) = i100 [ 1 -  2clS)(x)] (6) 

Since we are concerned with the growth kinetics around 
the centre, we use the step density and the nucleation 
rate at x = O. Secondly, in the expression of  equation (5) 
we have not counted the contribution of the nucleus itself 
to the growth rate. On including these effects in the 
growth rate, we can write the modified growth r a t e  G(a calc) 
as  

G(Calc) [ a  ., 1/2] 
a = bl00 /100al00 -~- (2ll00Vl00) (7) 

In Table 2 are listed the simulation results for growth 
rate Ga/b step density 2clS)o0(0)a, the calculated growth 
rate G(a calc)/b and the ratio of  the growth rates Ga/G (calc) 
for the cases "O t = V l l 0 / a l l  0 and ~Ot= vloo/aloo. It can be 
seen that for vt =VllO/allO, Ga and G(a ~c) are in 
good agreement with each other within 1% (simulations 
2-9). This indicates that the continuous model is a good 
approximation for the growth rate around the centre in 
spite of the high step density. On the other hand, for 
vt = vloo/aloo, Ga becomes smaller than G(~ al~) by about 
10% (simulations 10-17). The discrepancy can be 
explained as the result of  a special manner of propagation 
of multilayer steps on the discrete lattice 
with v t = Vloo/alo O, because multilayer steps are unstable 
for vt = VlOO/aloo, as mentioned earlier. We can expect a 
decrease in the average velocity of step propagation Vl00 
because of this effect. Assuming that 

[' / / a (sim) = bl00 /100al00 + 2f100V1100 (8) ~ a  

? 
the corrected step propagation rate Vl00 can be evaluated 
from equations (7) and (8), giving 

/ ,--,(sim)/. .t \ 2 
t ~ t ~ l t ' r a  /Ol00 --  l l00al00~ 

Vloo/aloo = t V l o o / a l o o )  1 ~  - . 7 - - 7 1  (9) 
\ G a  /b l00  --  /100al00/  

The corrected values are also tabulated in Table 2. 
Except for ilooa~oo/VloO = 1/30 and vt = vloo/aloo, the 

difference between Vl00 and v~00 is negligible because 
G(Calc) and ~(sim) a r e  in good agreement. In addition, the a v a  
step densities are so low that no correction in nucleation 
rate is needed for ilooa2oo/Vloo = 1/300. 

Step densities 
Since the solutions of  the analytical models are given 

in the form of  step densities l and r, we can make a 
straightforward comparison between the step densities 
obtained from the simulation and the theoretical 
predictions. The simulation results are plotted in Figures 
4-7; the horizontal axis in each figure is scaled with v'loot. 
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Table 2 Lists of  growth  rates for ilooa~loolVloo = 1/30 and Vloolalo 0 = 0.03; (2i100v100)1/2 = 0.00775. The other  parameters  used in each simulation are 
those assigned the same simulation number  as shown in Table 1 

Simulation vt Galb 2cI~ (O)a a(a calc)/b Ga/G (calc) v'loo/a 1oo 

2 Oll0/all 0 0.00767 0.19 0.00778 0.99 Vl~/al00 

3 0.00772 0.18 0.00783 0.99 

4 0.00770 0.18 0.00783 0.98 

5 0.00791 0.19 0.00778 1.01 

6 0.00779 0.20 0.00773 1.01 

7 0.00779 0.18 0.00783 0.99 

8 0.00808 0.17 0.00789 1.02 

9 0.00828 0.19 0.00778 1.06 

10 v l~ la l~  0.00685 0.21 0.00767 0.89 0.023 

11 0.00693 0.22 0.00762 0.91 0.024 

12 0.00682 0.23 0.00757 0.90 0.024 

13 0.00685 0.23 0.00757 0.91 0.024 

14 0.00675 0.22 0.00762 0.89 0.023 

15 0.00698 0.22 0.00762 0.92 0.025 

16 0.00695 0.22 0.00762 0.91 0.024 

17 0.00697 0.22 0.00762 0.91 0.025 

0.4 " ~ 0  

0.3 I ~ o ~  
f....~,-o ......... o......~ ....... 

o.1 

0 

0 0.5 1 1.5 
X/V'lOOt 

Figure 4 Profile slopes I1 - rla plotted against lx/v~oott. The plots are 
for simulations 10 (©), 12 (a ) ,  13 (©), 14 (D), 16 (~)  and 17 (V) f rom 
Table 1. The theoretical curves are calculated with i a = 7.8 x 10 .4 and 
v'/a = 0.024: ( ) Mansfield's ellipse; ( -  - - )  hloo/v'lo o = 1.27; ( . . . . . .  ) 
hl00/vrl00 = 1.40; ( . . . . . . .  ) hioo/v~o o = 1.53; ( . . . . . . .  ) hloolv~o 0 = 1.65 

The step densities are calculated for each 500 sites and 
the moving average method is used as a smoothing 
technique: the sum of three adjoined data is divided by 3 
and the resulting value is plotted as a value at the centre 
of  the three data. The step densities around the edges are 
not shown in these figures because in the vicinity of  the 
edges of  the growth face, it becomes difficult to locate the 
boundaries between the { 100} and { 110} growth sectors 
owing to the formation of  multilayer steps. It should also 
be noted that the corrected values of  i=ooaloo and 
Vloolaloo defined as above are used for the calculation 
of  the theoretical curves. 

Figures 4 and 5 are the plots of the profile slopes 
II  - rla obtained under several growth conditions listed 
in Table 1; Figure 4 applies to a high step density, while 
Figure 5 applies to a low step density. Figure 6 shows the 
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Figure 5 Profile slopes II - ria plotted against IX/VtlOOtl. The plots are 
for simulations 25 (O), 26 (A) and 27 (©) from Table 1. The theoretical 
curves are calculated with no correction for ia and v/a: ( ) 
Mansfield's ellipse; (- - -) hioo/V'lo o = 1.29; ( ...... ) hloo/v'lo o = 1.74 

average step densities 2c(S)a and 2c(m)a for the same 
conditions as in Figure 4. 

The plots of simulations 10, 12 and 13 in Figure 4 and 
simulations 25 and 26 in Figure 5 are of  truncated 
lozenge shape (type B), and the plots of simulations 16 
and 17 in Figure 4 and simulation 27 in Figure 5 are of 
lenticular shape (type A) (see Figure 3). It can be seen 
that the plots of truncated lozenge shape are on a single 
master curve, though the curve gradually deviates from 
Mansfield's ellipse with increasing x/v~oot. Concerning 
the slope of lenticular shape in contrast to the theoretical 
prediction of a constant slope near the edges, a mono- 
tonous increase is seen in the slopes of simulations 16 and 
17 in Figure 4, while the slope of simulation 27 in Figure 5 
gradually levels off near the edge. On the other hand, 

(m) in Figure 6 the plots of 2c a should be compared 
with the theoretical curves in the figure. We can see the 
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Figure 6 Average step densities 2c(S)a and 2c(m)a plotted against 
Ix/v~ootl. The plots are for simulations 10 (©), 12 (A), 13 (O), 14 (O), 
16 (O) and 17 (~7) from Table 1. The open symbols are for c (m), the 
closed symbols for c (s). The theoretical curves are calculated with 
i'a = 7.8 x 10 -4 and v'/a = 0.024: ( ) Mansfield's ellipse; ( -  - - )  
hloo/v~o o = 1.27; ( . . . . . .  ) hloo/V'loo = 1.40; ( . . . . . . .  ) hloo/V~o o = 1.53; 
( . . . . . . .  ) hloo/v~o 0 = 1.65 

discrepancies between them in the same manner as in 
Figures 4 and 5. 

F rom Figure 6, it can also be seen that the value of  
2c(S/a shows a weaker dependence on x/v~oo t than 2c (m)a. 
We can regard the ratio between these step densities as an 
average step height. This means that  the average height 
of  multilayer steps increases with x/v'loot, and the 
contribution of multilayer steps to the growth becomes 
larger near the edges of  the { 100} growth face than at the 
centre of  it. This fact gives us an important  clue to help us 
clarify the origin of  the discrepancies. In our model, we 
did not inhibit nucleation on the side surfaces of  
multilayer steps. The effects of  these nucleations can be 
examined by carrying out simulations under the condi- 

• 2 I tion of  low step density, i.e. tlooaloo/VlOO = 1/300 and 
v t = V l l 0 / a l l 0 ,  with an additional restriction that the 
nucleation events on the side surfaces of  multilayer steps 
are inhibited on the {100} growth face; the growth 
conditions (simulations 28-31) are listed in Table 1. The 
results in Figure 7 show that  the plots agree well with the 
theoretical curves even for a lenticular shape. F rom this 
fact, we can conclude that the discrepancy between the 
simulation and theoretical results is mainly due to the 
nucleation events on the side surfaces of  multilayer steps. 

C O N C L U S I O N S  

Our Monte  Carlo simulation reproduced lateral habits of  
truncated lozenge and lenticular shape, as exhibited by 
polyethylene single crystals. Compar ison with the 
profiles calculated theoretically, however, gave less 
agreement. The discrepancies are due to the discreteness 
of  the actual crystal lattice, since the theoretical models 
assume a continuous substrate. Among  all the possible 
effects of  this discreteness, it is concluded that nucleation 
on the side surfaces of  multilayer steps has a great 
influence on the profile of  the growth front. The choice 
of  the filling rate at the top and bo t tom corners of  the 
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Figure 7 Plots of profile slopes [1 - rla with the additional restriction 
of/step = 0. The plots are for simulations 28 (©), 29 (A), 30 (~) and 
31 (r-l) from Table 1. The theoretical curves are calculated with no 
correction for ia and v/a: ( ) Mansfield's ellipse; (- - -) 
hl~/v'l~ = 1.12; ( . . . . . .  ) hloo/V~oo = 1.30 

multilayer step is also not trivial; the profile and the 
growth rate can be significantly affected by this choice. 
It is not an easy task to introduce the effects into any 
analytical treatment, and hence the simulational approach 
has its own significance. To investigate the microscopic 
mechanism of  creating curved edges, namely of slow step 
propagation on the { 100} growth face, we certainly need a 
simulational method for a discrete lattice. 
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