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Computer simulation of curved crystal
habits: polymer crystallization under an
anisotropic growth condition
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Computer simulation was carried out to study the morphological change in the lateral habit of polyethylene
single crystals grown from the melt. Monte Carlo simulation was utilized for modelling the processes of
surface nucleation and step propagation on the growth faces of a two-dimensional crystal with hexagonal
packing. Anisotropy of growth was introduced in the simulation by choosing different rates for these
processes on the {110} and {100} faces. Depending on the ratio of the step propagation velocity to the rate of
increasing width of the growth face, the computer simulation produced curved crystals of truncated lozenge
or lenticular shape, both of which have been observed experimentally. The change in morphology has been
analysed quantitatively. Copyright © 1996 Elsevier Science Ltd.
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INTRODUCTION

Single crystals of polyethylene with curved lateral habit
have been reported by several researchers'™ in their
work on crystallization from dilute solutions. The
crystals are basically truncated lozenges with curved
edges on the {100} growth faces (type B in Figure 1b).
Single crystals of lenticular shape (type A in Figure 1a)
have also been reported when polyethylene is crystallized
from the melt or from solutions at higher temperatures
(e.g. 106°C)""*°. Furthermore, in the case of crystal-
lization from the melt, polyethylene single crystals show
a morphological change from type A to type B which
accompanles the transition in growth regime from I to
11%8. To understand the formation mechanism of these
curved crystals is one of the current problems in th1s
field. In the earliest approach proposed by Sadler’,
thermal roughening of the growth face was respons1ble
for the curved crystals, but the idea was incompatible
with the standard models of polymer crystallization10 in
which the limiting process is surface nucleation, a process
unnecessary for the growth of thermally roughened
faces. Toda!! proposed an alternative approach, intro-
ducing some interruption effect on the step propagation
on the basis of nucleation-controlled growth. Such an
interruption effect is also able to cause curved growth
edges, as typically seen in the impurity effect on the
crystal habits of simple molecules’?

* To whom correspondence should be addressed
t Current address: Faculty of Integrated Arts and Sciences, Hiroshima
University, Higasi-Hiroshima 739, Japan

Following the second approach, Mansfield'* proposed
a theoretical model which allowed us to study the
morphological change in more detarl The approach I
based on a model proposed by Seto'* and Frank'® and
takes the effect of substrate growth into account by
introducing a moving boundary condition. Mansfield’s
model successfully produced the curved growth front
of type B crystals of polyethylene (Figure 1b) for the
spreading rate of substrate 4 being comparable with
the propagation Velocity of steps v, of & < v; the profile of
the growth front is represented by an arc of an ellipse in
the asymptotic form. Toda® extended the model for the
case of substrate spreading faster than the propagation
of steps, & > v, and showed that the lenticular profile
(type A in Fzgure la) is also predicted from the model.
Point and Villers!® obtained the numerical solutions of a
differential equation derived from the model of Seto and
Frank with a moving boundary condition; the resultant
crystals were also type A and type B. In these models, an
unusually slow propagation of steps is essential to
produce the curved growth front. The origin of such a
slow propagation of steps has not been identified;
possible candrdates are impurities'', self- porsonmg1 ,
lattice strain'® and domain boundaries®,

All the above approaches are based on the model of
Seto and Frank, describing nucleation and growth
processes on a continuous one-dimensional substrate,
and hence the approaches should be considered as an
idealization of the real crystals formed on a discrete
lattice. Strictly speaking, the detailed analyses of the
models are applicable only to growth with a sufficiently
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low step density. In dealing with the curved lateral habits
of actual crystals, however, we always encounter the
situation of extremely high step density, which is solely
responsible for the curved profile of the growth front. In
order to do a detailed inspection of the curved profile and
its growth kinetics, we must perform a computer
simulation of a discrete lattice.

In this work, we perform a Monte Carlo simulation of
a two-dimensional hexagonal lattice, applying an aniso-
tropic growth condition to model polyethylene crystal-
lization into an orthorhombic cell. Here ‘hexagonal
lattice’ only means that each site has six nearest
neighbours and we assign the indices [100] and [010] to

y
a) Lenticular G ‘
a
(100) T x
< —>
h=Gy, h=G;
G,

b) Truncated Lozenge T G,

Figure 1 Schematic illustration of (a) a lenticular shape (type A) and
(b) a truncated lozenge with curved edges (type B). Both types are
composed of {100} and {110} growth sectors. The width of the {110}
sectors in the type A crystal is too narrow to be recognized

two orthogonally crossed directions according to the
lattice of polyethylene crystals. A large difference in the
growth rates of the {110} and {100} faces is essential to
produce the curved crystals of type A and type B.

MODEL

We treat the growth of two-dimensional crystals on a
hexagonal lattice; the crystallization unit is called a
‘stem’. The scale factors are the stem width a and the
stem height b (Figure 2). In the simulation, a crystal
grows through two processes: one is nucleation and
the other is step propagation. The probabilities of
these processes are denoted as ia and v/a reslpectlvely,
because of the d1mens1ons of the rate i (cm 'y and
the velocity v (cms™ ). These two processes are
performed successively in the time sequences, as follows.
Firstly, the number of nucleation events r; is determined
from a Poisson distribution. Let the number of flat sites
be N, then the average number of nucleation events (n;)
is Nia, and the probability p(r;) becomes

(n;)" (M®

p(n) = 7l exp(—(n;)) = il

According to the probability, the number of nucleation
events is determined by a random number r (0 <r < 1).
If the random number r satisfies the condition

exp(—Nia)

ni+1

zp <r<2j

then the number of nucleation events is determined as n;.
The positions of these nuclei are selected using a random
number generated separately. This procedure is of
advantage for reducing the execution tlme of the
simulation, but only when ia is small enough . Secondly,
for the step propagation, each niche site is examined to
determine whether the step has advanced forwards or
not. Each computer simulation is continued until the

Figure 2 Schematic illustration of the growth front and definition of the parameters used in the simulation. The 5 axis is horizontal and the a axis

vertical
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system reaches a steady state (until the growth rates G,
and G, become constant); the crystal size is at least 5000
lattice sites.

In order to introduce an anisotropic growth condition,
we give ia and v/a two values according to the {110} and
{100} growth faces. To distinguish the rates on these
growth faces, we denote the rates as ijgo@100, 11021105
vi00/ @100 and vyyg/ai;9. To complete the step propaga-
tion at the edges of multilayer steps and the {110} and
{100} growth sectors, we must distinguish the two
additional situations of the attachment of a new stem
to the bottom corner and to the top corner of a
multilayer step or the edges of a growth sector, and
consequently we need to introduce the probabilities v,
and v, of the respective processes (Figure 2). Here, we
need to settle the complex conditions for the deposition
rate at the corners; however, this is beyond our knowl-
edge available from the experimental results. At present,
we simply choose to put v, = vjg9/@190 in the simulation
because our main concern is the growth on the {100}
faces. The choice of v, is more complicated because this
parameter controls the stability of multilayer steps; a
slow filling rate of v, causes the decomposition of
multilayer steps. In the simulation, we examine two
cases: v = Vy90/ @100 and vy = Vy10/ai10.

In our model, the six parameters detailed above
determine the growth kinetics and the morphology of a
two-dimensional crystal formed on an orthorhombic
lattice. The rate of increasing width of the growth
substrate A is automatically determined by these para-
meters because the simulation is of a two-dimensional
crystal. From the number of controlling parameters, it
seems that there might be an extremely wide choice of
parameters. However, since we are concerned with the
conditions generating type A and type B crystals, we
require that (1) the aspect ratio B/ A4 be less than around
3, (2) hygo be approximately equal to vioy and (3) the step
density on the {110} face be low enough so that the facets
of the {110} growth faces can be observed According to
the first condition, we set ijoo@igo/v100 = 1/30 for the
aspect ratio of 2 6 obtained from lenticular crystals
experimentally™ 88 From the second condition, we set
v100 = brioioLiie (R=higo)s expectmg single-nucleation
growth of the {110} growth face in lentlcular crystals.
Finally, from the third condition, we set 11100110 Jv10 < 1.
Taking these conditions into account, we set
ito0d100 = 107> and vyg0/a100 = 0.03, and the probability
of the fastest process, namely vy9/ay10, is always set at 1.
To control the value of A /v in our simulation, we
choose i} 1pa; o as the controlling parameter because of the
advantage in comparing results and the ease with which
we can change the value; if we choose vyg/a190, We Will
have to change other parameters 51multane0usly The
value of ijjga;19 is chosen from the range 10~ ‘_6x 1073,
Additionally, to make a clear comparison between
simulation and theoretical results, we also adopt the
condition 11100100/11100 = 1/300 for the case of low step
density. The remaining two parameters vy, and v; are
determined as stated above. The parameters used in the
simulation are listed in 7Table I, as are the results for
00/ V100 (Where vgg is a corrected step propagation rate
defined later), the aspect ratio B/ A and crystal type.

In our model, we neglect the probability of the
detachment of stems. But this does not mean that we
simply ignore the fluctuation of step propagation;

fluctuation can be introduced by making the probability
Vigodigo less than 1. In general, detachment processes will
not be important unless the difference between the rates
of attachment and detachment is small enough, and this
is the case under the usual conditions of polymer
crystallization.

THEORETICAL

In this section, we refer to the results of the theoretical
calculations of Mansfield”® (h < v) and Toda® (k> v).
Since we are concerned with the curved growth front of
the {100} growth face, all the subscripts which specify the
{100} growth face are omitted in this section.

The basis of these calculations 1s a couple of
differential equations suggested by Seto'* and Frank'®
The equations describe the change in the densities of left-
moving and right-moving steps, /(x,¢) and r(x,?), at a
position x and time ¢ on a one-dimensional substrate of
length L. The growth rate G and the profile of the growth
front are given by G = b(! + r)v(= 2bcv, where 2c is the
total step dens1ty) and by the mtegratmn of b(l —r),
respectively'>. Employing the moving boundary condi-
tion L = 2ht, Mansfield!?® obtained an asymptotic solu-
tion of the differential equations for h < v

= () (2]
I(x, 1) ~ [(ﬁ) G):i)] 2

These step densities give the profile of the growth front as
y = Gi[l — (x/vr)’]'"? 2)

where x and y are the coordinates of the [010] and [100]
directions in Figure I, respectively. Equation (2) repre-
sents an ellipse, the shape of which is independent of the
rate h. The substrate spreading rate s determines the
positions of the edges of the growth substrate, x = + ht,
in the ellipse. Since the solution gives a six-sectored single
crystal composed of two {100} growth sectors and four
well-developed {110} sectors, we call this profile a
‘truncated lozenge® with curved edges (type B in
Figure 1b).

In the case of & > v, the densities of right-moving and
left-moving steps are given in the positive x region by’

VA EENEE
w6 oss<2) ©
o~ |(5) G|

(i (h+ov\]"?
L(5> <?)] ” (%t <x< ht) (4)
1) ~ G‘) (hlz)]

For negative x, the symmetry relation r(—x,t) = I(x, )
holds. It should be noted that in the vicinity of x = + Az,
equations (4) are not the exact solution because of the
boundary condition /(£ ht,?) = r(£ht,t) =0. A char-
acteristic of the solution is the constant step densities

O<|x|<hry (1)

r(x, 1) =
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near the edges of the substrate, i.e. (vzl/h < |x| < ht, as
seen in equations (4). This means that the profile
becomes linear near the edges, while the central region
(equations (3)) is represented by Mansfield’s ellipse of
equation (2). Since the substrate spreads faster than the
propagation of steps, the substrate does not grow at the
edges, x = + A1, and consequently the width of the {110}
growth sectors is kept constant from the early stages of
growth; the lateral habit expected from this solution is a
‘lenticular shape’ (type A in Figure la).

RESULTS AND DISCUSSION

Profile

Figure 3 shows the lateral habits and the morpho-
logical change obtained in the present simulation for
ilooa%oo/vloo = 1/30 and vy = Ulgo/aloo. It is clear that
depending on the value of /hjgy/vi0g OF i110a110, the
crystals change habit from truncated lozenge (type B) to
lenticular shape (type A). In the type A crystals in Figures
3e and 3f, the width of the {110} growth sectors was kept
constant from the early stages of growth. The width was
several tens of sites and the {110} sectors cannot be seen
in the figures at the given magnifications.

The morphological change seen in the simulation
agrees with the theoretical predictions described
above>®®. In quantitative comparison with the theo-
retical calculations, however, the results of simulation do
not agree well with the calculations. The discrepancies
between the theoretical calculations and the simulation
results will be discussed below in detail. Here, it should
be noted that the morphological change from type B does
not occur at hjgo/vig = 1, in contrast to the theoretical
prediction®®®. The value of hq/v}gp needs to be some-
what larger than 1 to give rise to the transition. This is
because the growth in width of the {110} sectors is enabled
by nucleation at the outermost edges of the {100} growth
face, in spite of the condition A9 /v}g > 1. Additionally,
the choice of v, also affects the resultant morphology; a
smaller v, brings a decrease in the growth rate of the width
and vice versa. Such an effect of v, can be seen in
simulations 1-9 in Table 1. By the choice of
v, = vy1g/a119, the width of the {110} sectors is kept
constant only for simulation 9 with the quite large values
Moo/ Vieo = 2.80 and B/A = 9.8. We are not able to judge
whether the choice of v =wvgaipq in the present
simulation is a realistic one or not. At least it is certain
that the process of filling in at the corners is one of the

Table 1 Parameters used in the simulation and the results for /g9 /v\gq, aspect ratio B/A and crystal type. The other fixed parameters are
11100/0100 = v, = 0.03 and 1’110/“110 =1
Simulation F1o0@i00/ V100 vy fied110 h100/ 100 B/A Type
| 1/30 Y10/ @110 107° 0.01 0.54 B
2 6x107° 0.23 1.3 B
3 1074 0.33 1.7 B
4 3% 107 0.68 2.8 B
5 6x 107* 1.02 39 B
6 1073 1.36 5.1 B
7 2x 107° 1.85 6.9 B
8 3% 107? 222 8.1 B
9 6x107° 2.80 9.8 A
10 100/ 100 2x 1074 0.68 2.6 B
11 3% 107 0.87 3.1 B
12 4x107* 1.03 3.5 B
13 6x 107 1.27 4.3 B
14 1073 1.40 438 A
15 15x 1077 1.45 5.0 A
16 3% 1077 1.53 5.3 A
17 6 x 107 1.65 5.6 A
18 1/300 Y110/ 110 5x107° 0.05 1.0 B
19 1073 0.10 1.5 B
20 107 0.41 5.1 B
21 3% 107 0.72 8.3 B
2 4% 107 0.86 9.6 B
23 5x107* 0.96 11 B
24 55% 1074 1.02 12 B
25 6x 107 1.06 12 B
26 107} 1.29 15 B
27 3x 1077 1.74 20 A
28 1/300 (igep = 0) vi10/d110 6x 107 1.01 1 B
29 7% 1074 1.03 12 A
30 107 1.12 13 A
31 2% 1073 1.30 15 A
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most important factors determining the lateral habits in
the actual crystallization process.

Growth rate of the {100} face

Before starting the discussion, we need to introduce
two different step densities. One is ¢ and the other ¢™
a multilayer step is counted once as a single step in the
former density, and in the latter it is counted according
to the number of layers in the step. The former density
represents that of number-averaged steps and the latter
that of weight-averaged steps. In the evaluation of
growth rate and slope, we need to use ¢™.

The growth rate G, is determined by the growth
kinetics in the central region of the {100} growth face. On
such a well-developed growth face as that of the {100}
sector, it is reasonable to assume multinucleation

Figure 3 Two-dimensional crystals created by the simulation. The
results are for simulations 10 (a), 11 (b), 12 (c), 13 (d), 15 (¢) and 17 ()
from Table 1. The bar corresponds to a width of 1000 sites

growth. The growth rate in this mode is usually
represented by

G, = bigo(2i100v100)" (5)

For growth on a discrete lattice, however, we must
consider the following two additional effects, especially
under the condition of high step density encountered in
the simulation. Firstly, nucleation at a niche site on a
discrete lattice has no physical meaning, and hence these
niche sites must be ruled out as sites for nucleation. The
average nucleation rate g (x), taking account of this
effect is represented by

foo(x) = 100 [ 1 = 263 ()] (6)

Since we are concerned with the growth kinetics around
the centre, we use the step density and the nucleation
rate at x = 0. Secondly, in the expression of equation (5)
we have not counted the contribution of the nucleus itself
to the growth rate. On including these effects in the
growth rate, we can write the modified growth rate G
as

G = by [i’100a100 + (21',100”100)1/2] (7

In Table 2 are listed the simulation results for growth
rate G,/b step density ZC(IO)O( 0)a, the calculated growth
rate G{l) /b and the ratio of the growth rates G,/ Gl
for the cases v, = vy9/ay0 and v = vig9/a1g0. It can be
seen that for v, = vi/ang G, and GE¥) are in
good agreement with each other within 1% (s1mulations
2-9). This indicates that the continuous model is a good
approximation for the growth rate around the centre in
spite of the high step density. On the other hand, for
v, = Vi00/ @100, G becomes smaller than G(2) by about

10% (sunulatlons 10-17). The dlscrepancy can be
explained as the result of a special manner of propagation
of multilayer steps on the discrete lattice
with v, = vg9/a100, because multilayer steps are unstable
for v, = v1g9/ @100, as mentioned earlier. We can expect a
decrease in the average velocity of step propagation vy
because of this effect. Assuming that

i , . 1/2
fo“") = bygo [111000100 + (2110001100) / ] (8)

the corrected step propagation rate v}y can be evaluated
from equations (7) and (8), giving

. 2
GS™ /b100 — Tigodi00 9
chalc) ( )

UIIOO/‘I]OO = (U100/0100)<

!
/bioo — H1004100

The corrected values are also tabulated in Table 2.

EXCCpt for ilooaloo/vlo() 1/30 and Y = ’U]O()/aloo, the
difference between V100 and vjy, is negligible because
G and G¥'™ are in good agreement. In addition, the
step densmes are so low that no correction in nucleation
rate is needed for ijgyalg/vi00 = 1/300.

Step densities

Since the solutions of the analytical models are given
in the form of step densities / and r, we can make a
straightforward comparison between the step densities
obtained from the simulation and the theoretical
predictions. The simulation results are plotted in Fzgures
4-7; the horizontal axis in each figure is scaled with vggz.
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Table2 Lists of growth rates for ilOOa%OO/'UlOO = 1/30and vyg9/a300 = 0.03; (21’,001)100)'/2 = 0.00775. The other parameters used in each simulation are

those assigned the same simulation number as shown in Table 1

Simulation v G,/b 2% (0)a G /b G,/GE Yoo/ 100
2 vi10/d110 0.00767 0.19 0.00778 0.99 v100/ @100
3 0.00772 0.18 0.00783 0.99
4 0.00770 0.18 0.00783 0.98
5 0.00791 0.19 0.00778 1.01
6 0.00779 0.20 0.00773 1.01
7 0.00779 0.18 0.00783 0.99
8 0.00808 0.17 0.00789 1.02
9 0.00828 0.19 0.00778 1.06
10 Vi00/ @100 0.00685 0.21 0.00767 0.89 0.023
11 0.00693 0.22 0.00762 0.91 0.024
12 0.00682 0.23 0.00757 0.90 0.024
13 0.00685 0.23 0.00757 091 0.024
14 0.00675 0.22 0.00762 0.89 0.023
15 0.00698 0.22 0.00762 0.92 0.025
16 0.00695 0.22 0.00762 0.91 0.024
17 0.00697 0.22 0.00762 0.91 0.025
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Figure 4 Profile slopes |/ — r|a plotted against |x/vg¢]. The plots are
for simulations 10 (O), 12 (A), 13 (<), 14 (O), 16 (O) and 17 (V) from
Table 1. The theoretical curves are calculated with i'a = 7.8 x 10~* and
v’ /a = 0.024: (——) Mansfield’s ellipse; (— — =) h1g9/Vigo = 1.27; -+ - -~ )
higo/Viep = 1.40; (------- ) higo/Vioo = 1.53; (-+--+-) Ao /Vop = 1.65

The step densities are calculated for each 500 sites and
the moving average method is used as a smoothing
technique: the sum of three adjoined data is divided by 3
and the resulting value is plotted as a value at the centre
of the three data. The step densities around the edges are
not shown in these figures because in the vicinity of the
edges of the growth face, it becomes difficult to locate the
boundaries between the {100} and {110} growth sectors
owing to the formation of multilayer steps. It should also
be noted that the corrected values of ijpaj0 and
vi00/aygo defined as above are used for the calculation
of the theoretical curves.

Figures 4 and 5 are the plots of the profile slopes
|/ — r|a obtained under several growth conditions listed
in Table 1; Figure 4 applies to a high step density, while
Figure 5 applies to a low step density. Figure 6 shows the

1626 POLYMER Volume 37 Number 9 1996

Figure 5 Profile slopes |/ — r|a plotted against |x/v\g?|. The plots are
for simulations 25 (O), 26 (A) and 27 (<) from Table 1. The theoretical
curves are calculated with no correction for ia and v/a: ( )
Mansfield’s ellipse; (~ ~ ~) hyo0/V10 = 1.29; (--+- - ) Moo/ Voo = 1.74

average step densities 2c®a and 2¢™a for the same
conditions as in Figure 4.

The plots of simulations 10, 12 and 13 in Figure 4 and
simulations 25 and 26 in Figure 5 are of truncated
lozenge shape (type B), and the plots of simulations 16
and 17 in Figure 4 and simulation 27 in Figure 5 are of
lenticular shape (type A) (see Figure 3). It can be seen
that the plots of truncated lozenge shape are on a single
master curve, though the curve gradually deviates from
Mansfield’s ellipse with increasing x/v)gf. Concerning
the slope of lenticular shape in contrast to the theoretical
prediction of a constant slope near the edges, a mono-
tonous increase is seen in the slopes of simulations 16 and
17 in Figure 4, while the slope of simulation 27 in Figure 5
gradually levels off near the edge. On the other hand,
in Figure 6 the plots of 2¢™g should be compared
with the theoretical curves in the figure. We can see the
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Flgure 6 Average step densities 2¢¥a and 2¢™gq plotted against
|x/vi00t|- The plots are for simulations 10 (O), 12 (A), 13 (), 14 ),
16 (O) and 17 (V) from Table I. The open symbols are for ™ the
closed symbols for ¢®. The theoretical curves are calculated w1th

i‘a=78x10"* and v '/a = 0.024: (——) Mansfield’s elllpse (---)
hio0/Vige = 1.27; (--+ - ) hioo/Vioo = 1.40; (------- ) hioo/Vioo = 1.53;
(-=-) thO/UIIOO =1.65

discrepancies between them in the same manner as in
Figures 4 and 5.

From Figure 6, it can also be seen that the Value of
2¢%a shows a weaker dependence on x /vt than 2™
We can regard the ratio between these step densities as an
average step height. This means that the average height
of multilayer steps increases with x/vjgt, and the
contribution of multilayer steps to the growth becomes
larger near the edges of the {100} growth face than at the
centre of it. This fact gives us an important clue to help us
clarify the origin of the discrepancies. In our model, we
did not inhibit nucleation on the side surfaces of
multilayer steps. The effects of these nucleations can be
examined by carrying out simulations under the condi-
tion of low step density, i.e. i1ooﬂ%oo/1/100 = 1/300 and
v, = vy1p/a110, With an additional restriction that the
nucleation events on the side surfaces of multilayer steps
are inhibited on the {100} growth face; the growth
conditions (simulations 28—-31) are listed in Table 1. The
results in Figure 7 show that the plots agree well with the
theoretical curves even for a lenticular shape. From this
fact, we can conclude that the discrepancy between the
simulation and theoretical results is mainly due to the
nucleation events on the side surfaces of multilayer steps.

CONCLUSIONS

Our Monte Carlo simulation reproduced lateral habits of
truncated lozenge and lenticular shape, as exhibited by
polyethylene single crystals. Comparison with the
profiles calculated theoretically, however, gave less
agreement. The discrepancies are due to the discreteness
of the actual crystal lattice, since the theoretical models
assume a continuous substrate. Among all the possible
effects of this discreteness, it is concluded that nucleation
on the side surfaces of multilayer steps has a great
influence on the profile of the growth front. The choice
of the filling rate at the top and bottom corners of the
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Figure 7 Plots of profile slopes |/ — r|a with the additional restriction
of ige, = 0. The plots are for simulations 28 (O), 29 (4), 30 () and
31 (O) from Table 1. The theoretical curves are calculated with no
correction for ia and wv/a: (——) Mansfield’s ellipse; (- - -)
fioo/Vioo = 1125 (- ) foo/vieo = 1.30

multilayer step is also not trivial; the profile and the
growth rate can be significantly affected by this choice.
It is not an easy task to introduce the effects into any
analytical treatment, and hence the simulational approach
has its own significance. To investigate the microscopic
mechanism of creating curved edges, namely of slow step
propagation on the {100} growth face, we certainly need a
simulational method for a discrete lattice.
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